0-7803-7632-3/02/$17.00 ©2002 IEEE

Distro: A Distributed Static Round-Robin Scheduling Algorithm
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Abstract- The Clos-network is widely recognized as a scalable
architecture for high-performance switches and routers. Since
more contention points are introduced in the multistage
network, cell buffers are commonly used te resolve the
contention. Receatly, several scheduling algorithms have been
proposed for the buffered Clos-Network switches. These
approaches will cause cither mis-sequence or memory speedup
problem. In this paper, we propose a highly scalable bufferiess
Clos-network switching architecture. We also propose a
distributed sheduling algorithm, Distro. It is based on a novel
scheduling technique termed Static Round-Robin (SRR). Our
simulation results demonstrafe that our algorithm achieves
100% throughput under uniform traflic.

L INTRODUCTION

Most high-performance Internet backbone routers today
are built based on a crossbar switch with a centralized
scheduler. Several practical and effective crossbar switches
along with the appropriate scheduling algorithm have been
proposed [8]-[11]. However, the complexity of switching
hardware and scheduling algorithms usually depends on the
square of the number of switch ports. This makes them
difficult to scale to a large size in a cost-cffective way. Asa
result, switch architectures based on the three-stage Clos-
network are very attractive due to their modularity and
scalability.

Since more contention peints are infroduced in the
multistage network, cell buffers are commonly used to
resolve the contention. There are basically two approaches.
The first one has buffers in the second-stage, such as the
WUGS architecture in [3]. The function of the buffers is to
resolve contention among cells from different first-stage
modules. However, cells may be mis-sequenced at the output
ports. It requires a re-sequencing function, which is difficult
to implerent when the port number increases.

The second type of architecture has no buffers in the

second-stage. It uses shared memory modules, in first- and

third-stage to aggregate cells. The ATLANTA switch with its
Memory/Space/Memory (MSM) architecture constitutes a
commercially successful example [4]. This approach is more
promising as no mis-sequence problem exists.

The concurrent dispatching {CD) algorithm used in the
ATLANTA switch is a random-based scheduling algorithm.
1t can fully distribute traffic evenly to the central modules but
the contention cannot be avoided. This is similar to the PIM
algorithm for crossbar switches [7]. In particular, the CD
algorithm cannot achieve a high throughput unless the
internal bandwidth is expanded.

In crossbar switches, round-robin arbitration has been
developed to overcome the throughput lmitation of the PIM
algorithm, such as iSLIP [9] and DRRM [10]. Similarly, the

CRRD, CMSD and SRRD celi dispatching algorithms have
been recently proposed for MSM Clos-network switching
architecture using simple round-robin arbitration [6] [7].

However, one disadvantage of the MSM architecture is
that the input and output stages are both composed of shared-
memory modules. This is associating a memery speedup
problem. Although the speedup is smaller than that in output-
queued switches, it definitely hinders a switch to scaleuptoa
very large port number.

We solve the memory speedup problem by aBuff erless
Clos-network switching architecture which contains only
crossbars in all stages. All cells are stored in the input port
cards, just same as the virtual output queuing structure in the
single stage crossbar switches. Since the switching elements
are fully distributed by smaller modules, this raises the
challenge of how to design the scheduling algorithm in a
fully distributed way.

In this paper, we propose a distributed static round-robin
scheduling algorithm for Bufferless Clos-network switches,
called Distro. This is based on a novel scheduling technique
termed Static Round-Robin (SRR). Our simulation results
will demonstrate that our algorithrn achieves 100%
throughput under uniform traffic with comparable delay
performance.

The rest of this paper is organized as follows. Section II
introduces some background knowledge in the MSM
architecture. Sectior III describes our Distro algotithm in
Bufferless Clos-switch architecture. Section IV analyzes its

performance. Finally, we conclude this paper in section V.
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Figure 1. The MSM Switch Model
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1L THE MSM ARCHITECTURE
A.  The MSM Clos-network Switch Model

The MSM switch architecture has been proposed in the
ATLANTA switch [4]. As shown in Figure 1, the input and
output stages are both composed of shared-memory modules,
cach with » port interfaces. They are fully interconmected
through a central stage that consists of bufferless crossbars of
size k x k. In the switch, there are & input modules {IM), m
central modules (CM), and & output modules (OM).

An OM() has n buffered output ports, OP(.h}). Each
output port buffer can receive at most & cells from k central
modules and send at most one cell to the output line at one
timeslot.

An IM(i) has nk virtual output queues, VOQ(ijh}, for
storing cells that go from IM(i)} to OFP(k) at OM(j). Each
virtual output queue can receive at most n cells from » input
ports and send one cell to the central module. A VOQ Group
(i.j) comprises all VOQs from JM{i) to OM()).

An IM(i) has k output links, LI(i,r), connecting to each
CM(r). An CM{r} has k output links, LC(r,j), connecting to
each OM{j).

B. The Concurrent Dispatching (CD)

The distributed architecture of Clos-retwork implies the
presence of multiple contention points. The ATLANTA
switch proposed the CD algorithm with highly distributed
nature [4]. It works as follows.

In each timeslot, each IM randomly selects up to & VOQs
and randomly sends the requests to CMs. If there is more
than one request for the same output link in a CM, it grants
one request randomly. Finally, the granted VOQs will send to
the corresponding OP in the next timeslot.

The original CD algorithm applies a backpressure
mechanism in the dispatching process. We only describe its
basic concept and characteristic in this paper. We also
assume that the buffer size in IMs and OMs is large enough
to avoid cell loss. Hence we can focus the discussion on the
properties of the dispatching algorithms.

C.  The Concurrent Master-Slave Dispatching (CMSD)

The concurrent round-robin dispatching (CRRD) scheme
has been firstly proposed in [6] to overcome the throughput
limitation of the random-natured CD algorithm. The CMSD
is an improved version of the CRRD. It employs twe sets of
arbiters in |M, the master and the slave one, operating in a
higrarchal round-robin manner.

Initialization:

Each VOQ(ijh) is associated with an arbiter with Pointer_r
gJ.h}. Each LI{ir) is associated with a master arbiter with
ointer_j (if), and also associated with a slave arbiter with
pointer_h (i,rj). Each LC(r,j) is associated with an arbiter with
Pointar_i (rj). Set all peinters to 0.

Phase 1: Iteratively Matching within IM:

Step 1: Request. Each VOQ Greup sends a request to every
output [fink's master arbiter. At same time, each VOQ{i,jh)
sends a request to every siave arbiter,

Step 2: Grani. Each master arbiter searches one VOQ Group in
a round-robin fashion starting from Pointer_j {i,r). At same time,
each slave arbiter search one YOQ's request in a round-robin

fashion starting from Pointer_h (i,.j,r), it then send the grant to
VOQ{i).h} only if j has been selected by the master arbiter.
Step 3: Accept. Each VOQ(i,j h) searches ane grant in a round-
robin fashion starting from Painter_r (i,j,h) and sends the accept
to the selected output link LI(i.0).

Phase 2: Matching between IM and CM:

Step 1: Request. Each LI{i,”), who was accepted by a VOQ(ij.h)
in Phase 1, sends the reguest to the CM(r j).

Step 2. Grant. Each GM(r,j) search one request in a round-robin
fashion starting from Pointer_i (r,j).

Finally, the CM(r.j) sends the grant to the selected IM and hence
selected VOQ, which sends the head cell in next timesfot. All
matched pointers are updated to one position beyond the
matched one.

D. The Static Round-Rebin Dispatching (SRRD)

The intuition behind the SRRD design is to desynchronize
the arbiters’ pointers in a static way. It is the same as CMSD
except with following changes.

Initialize the pointer by setting Pointer_r {i,j,h) = h, Pointer_h (i.j.r}
=r, Pointer_j (ir) = (i+r) % k, Pointer_i {r.j) = i if {Pointer_j
(i,)==j). In each timeslot, Pointer_j {ir} & Pointer_i (r.j) are
always incremented by one and Pointer_h {i,j.r} & Pointer_r {ij.h)
remain unchanged.

As shown in the Figure 2, with above simple changes, the
delay performance of the SRRD algorithm is significantly
better than the CMSD. This is due to the full
desynchronization of the SRRD pointers. Hence the
contentions in the CM and the OM are almost minimized for
uniform ncoming traffic.

We also compare the delay performance of the algorithms
in the MSM architecture and in a single stage switch under
uniform traffic in Figure 2. We used the MSM setting of
rn=m=k=§, which corresponds to a port size of N=64 in a
single stage switch.

When load is below 0.5, the delay performance of the
algorithms in the MSM architecture is larger than those in the
single switch, such as PIM, iSLIP, SRR and Output Queued
algorithm. But the situation is improved in heavy load region.

E— PIM  (Crossbar)

-0- ISLIP (Crossbar)
—r— SRR (Crossbar)
{MSM)
-o- CMSD (MSM)
—e- SRRD (MSM)

Mean Delay
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Figure 2. Delay comparison of Crossbar and MSM
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Figure 3. The bufferi2ss Clos-network switch architecture

111 THE BUFFERLESS ARCHITECTURE
A.  The Bufferless Clos-network Switch Model

Ome disadvantage of the MSM architecture is that the input
and output stages are both composed of shared-memory
modules. This is associating a memory speedup of n in each
IM and k in each OM. In output-queued switches, the
memory speedup is N=nxk. Although the speedup of MSM is
smaller than that in output-queuved switches, it definitely
hinders a switch to scale up to a very large port number.

As depicted in Figure 3, the Bufferless Clos-network
architecture is slightly modified from the MSM architecture
by replacing all shared memory modules by crossbars. All
cells are stored in the input port cards, just same as the virtual
output quening structure in the single stage crossbar switches.

An [Pfig) has N virtual output queues, VOQfigjh),
storing cells that go from IP(i,g) to OP( k) at OM(). Each
virtual output queue can receive at most one cell send at most
one cell. A VOQ Group (i,g,j) comprises all VOQs from
IP@.g) to OM()).

In this paper, i corresponds to an IM, g to a specific input
port of an IM, j corresponds to an OM, and k to a specific
output port of an OM.

B. The Distro Algorithm

Since the contention points exist in all output links of the
IPs, IMs, CMs and OMs, the scheduling in the Bufferless
architecture is more challenging than in the MSM
architecture. The algorithms for the MSM architecture are
based on the request-grant-accept (RGA) handshaking
scheme. This approach is difficoit to implement when too
many contention points exist. Hence our Distro algorithm
adopts the request-grant (RG) scheme as proposed by the
DRRM algerithm in [10].

2300

Initialization:

Each IP(i,g) is associated with Arbiter_j (i,g) with Pointer_j (i.g).-
Each VOQ Group in IP(,g) is associated with Arbiter_h (i,g,)
with Pointer_h (1,9). Each Li{i1) is associated with Arbiter g (i.7)
with Pointer_g (i,r). Each LC(r,)) is associated with Arbiter_i (rj)
with Pointer_i {r,j). Each OP(j,h) is associated with Arbiter_r {j,h)
with Pointer_r (j,h). For all i & g, initialized as follows:

j=@+r%ich=ir={-0%m
Pointer_| {illg] = J; Pointer_h [il[g] = h; Pointer_g {illq = g:
Pointer_i [f]il =i; Pointer_r [jlih] = r;

Phase 1: Request selection in each IP(i,g):

Each Arbiter | (i.g} selects an non-empty VOQ Group in a
round-robin fashion starting from Pointer_j {i,g). In the same
time, each Arbiter_h {i,g,j) selects a non-empty VOQ within
VOQ Group (i,0)) in a round-robin fashion starting from
Pointar_h(i,a.)). Then each IP{i,g) sends the request {ih] to its
output fink only if  has been selected by the Arbiter_j and h has
been selected by the Arbiter_h.

Phase 2: Grant from Lii,r):

Each LI{i,r} systematically chooses the request [j,h] from IP(,9)
by Arbiter_g (i,r) where Pointer_g (i.r) == g. Then LI(i,r) sends
the raquest to LC(r.j).

Phase 3: Grant from LC(rj):

If LC(r.j) receives one or more non-empty requests from k Lis, it
chooses the request [jh} in LIfi,n by Arbiter_i {r.j} in a round-
robin fashion starting from Peinter_i (r,j). Then LC{r,j) sends the
request to OP{j,h).

Phase 4 Grant from OP{j.h):

If QP(j,h) receives one or more non-empty requests from k LCs,
it chooses the request [j,h] in LC{r.j} by Arbiter_r {j,h) in a round-
robin fashion starting from Peinter_r (j,h).

Finally, the OP(j.h} notifies the IP(i,g) via the granted path, and
the VOQ {i,g.ih) will sends to OF(j,h) in next timeslot. Pointers
are updated as: Pointer_j(i,g}++, Pointer_g(i.r)- in each timeslot,
Pointer_h (i,g)++, Pointer_r (j,h)++ in every k time slots.
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ANALYSIS OF DISTRO ALGORITHM

We compare the delay performance of our Distro algorithm
with other related algorithms in Figure 4. It is clear that
Disiro achieves 100% throughput under uniform traffic.
When load is less than 0.65, the Distro algorithm is worse
than the iSLIP in a reasonable scale. This is due to more
contention points in the Clos-network switches. However, as
the load increases, the desynchronization effect of Distro
improves the delay performance. In the heavy load region,
the performance of the Distro closely approximates to the
performance of the SRR algorithm.

The delay performance of the MSM algorithms is generally
large than other algorithms in light load region. Since it used
shared-memory modules to resolve the contention for OPs,
their delay performances in heavy load region are the best
compared with other architectures, But this is compensated
by the high memory speedup.

As mentioned in previous section, our bufferless Clos-
network architecture is very scalable for the port size.
Actually, we have a lot of flexibilities in configurations. We
can either scale up the port size by increasing the number of
ports » per input/output module, or increasing the number of
central modules m. Note that m must larger or equal to # in
order to achieve nonblocking property in Clos network.

Figure 5 shows the delay performance by the Distro
algorithm with different port size. In general, the mean delay
increases with the number of ports, However, if we scale up
the port size by increasing m, the mean delay is even smaller
in some load regions. This is because a larger number of
central modules will decrease the contention.

B.  Hardware implementation

The implementation of the Distro schemes is consisting of
simple round-robin arbiters, in which priority encoders are
adopted as in the iSLIP architecture [9]. For each round-robin
arbiter, the hardware complexity is approximately Ofh..,),

&+ Dlstro 128 Ports (n=8, m=k=16)
—— Distro 684 Ports (n=8, m=k=8)
10° || = Distre 32 Ports (n=4, m=k=8)
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Figure 5. Delay of the Distro with different port size

where n,,, is the number of requests to be selected by the
arbiter. The complexity of all arbiter used in the Distro
algorithm is o(/v).

In Phase 1, arbiters are interconnected to construct a
scheduler in each IP as shown in Figure 6. The state register
uses nk bits to record whether a VOQ has celi or not, and &
bits to record whether a VOQ Group has non-empty VOQ or
not. The Arbiter_j (i,g) selects an non-empty VOQ Group. In
the same time, each Arbiter h (i,gj) selects a non-empty
VOQ within VOQ Group (3,g,)). Then each IP(i,g) sends the
request [1.h] to its output link only if / has been selected by
the Arbiter_j and 4 has been selected by the Arbiter_h. The
final decision [j,h] is save in the request register.

In static round-robin schemes, updating of the scheduler
pointers is independent on the search result. This requires no
information transfer during the scheduling and hence the
round-robin schedulers are simpler than those used in iSLIP
and CMSD. However, the main implementation challenge is
rot in the individual arbiters, but rather in implementing the
arbitration process as a whole. In this paper, we just outline
the schematic configuration of schedulers in Figure 3. The
detailed implementation can refer to [4].

C. Scheduling Time

In a round-robin arbiter implemented by priority encoders,
the time complexity is Odognreq). In Phase 1, the scheduling
time complexity for Arbiter_j and Arbiter_h is max(logk,logn) .
In Phase 2, the matching time complexity is O¢J). The
scheduling complexity in Phase 3 and Phase 4 is ogoghy and
Otlogm) , Tespectively.

Let o is the constant determined by device technology,
B is the transition delay between arbiters. Assume we use the
configuration of n=k=m=J~ . Then the required scheduling
time of the Distro algorithm is given by 3lg~+68 . In contrast,
the iSLIP algorithm requires 2lgN+28 Hence the

scheduling time of the Distro algorithm is highly sensitive to
the communication overhead between arbiters.
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V. CONCLUSION

Single stage switching techniques are inherently limited by
their quadratic complexity. The Clos-network architecture is
widely recognized as a very scalable architecture for high-
speed switching system. So far, only limited success has been
reported in the design of practical distributed scheduling
schemes for the Clos-network.

The traditional MSM arrangement of the CLos-network
switches hinder the scalability of a very large port size. In
this paper, we propose a distributed static round-robin
scheduling algorithm for Bufferless Clos-network switches,
called Distro. It is based on a novel scheduling technique
termed Static Round-Robin (SRR). Our simulation results
demonstrated that our algorithm achieved 100% throughput
under uniform traffic with comparable delay performance
with existing algorithms.
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